Seminar: Introduction to ANSI/AGMA/AWEA 6006-A03 Standard for Design and Specification of Gearboxes for Wind Turbines Sponsored jointly by the American Gear Manufacturers Association and the National Renewable Energy Laboratory **National Wind Technology Center National Renewable Energy Laboratories** Golden, Colorado, USA. **April 26-27, 2004 Lubrication Contributor:**

GEARBOX HEALTH Wear Metals Analysis

MEASURING AND IDENTIFYING WEAR METALS

Fatigue Chunks

Chips from Cutting Wear

Laminar Wear

and others

© Herguth Laboratories, Inc. 2004

Atomic Emission Spectroscopy

Metallic Elements
 Emit different colors of light when burned

- √ Copper Green
- ✓ Lithium Deep violet, magenta
- **✓** Sodium Yellow
- √ Cobalt Deep Blue
- √ Nickel Green-Blue

40 Years of Spectroscopy

2000

1959

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy

Detecting large wear debris

Acid Digestion

Acid Digestion

Add Strong Acid to dissolve (solubilize) wear debris

Wear Particle Concentration Techniques

Direct Reading Ferrogram

Particle Quantifier

Wear Particle Analysis WEAR RATES AND MECHANISMS

Wear Particle Analysis WEAR RATES AND MECHANISMS

Heat Treating of Ferrous Debris

As Received Ferrous Debris

Heated to 650F

Wear Particle Analysis Silica / Dirt

Wear Particle Analysis Non-Ferrous Bronze / Aluminum

Wear Particle AnalysisRust / Friction Polymers

Rust

Friction Polymers

SCANNING ELECTRON MICRSCOPY / ENERGY DISPERSIVE SPECTROSCOPY

Possible Solution for Variations in Metals Analysis Assembly For Filter

Control Volume / Analyze Debris from Filter

METALS DOESN'T REVEAL

LUBRICANT HEALTH Oil Degradation And Contamination

RELATIONSHIP OF PROPERTIES

% Additives vs. Viscosity @ 40 C cSt D-445

% Additives vs. Acid No. D-974

Days Aged in TOST D-943

DSC (Differential Scanning Calorimetry)

Viscosity Changes Where To Look

Contaminant Result

Different Lubricant Change

Oil Shearing Lower

Water Change

Semi-Solids Increase

Products of Oxidation Increase

Test Results / Sample Change

Acids

Oil forms acids when it oxidizes.

These acids accelerate the oil oxidation

The acids can also corrode equipment
as they circulate through the system.

Acid Number

Neutralize Acids with Basic KOH (Potassium Hydroxide)

2 3 4 5 6 7 8 9 10 11 12 pH Meter

Most Industrial Oils

Solids and Semi-SolidsFilter Residue

A clean dry filter is weighed The sample is drawn through the filter, and washed with solvent to remove residual oil Report as mg/100 ml of residue

5, 1250 H# 6, 1500 H# 7, 1750 H# 8, 2000 H

#9, 2250 H #10, 2500 H

Contamination of Lubricants

Contaminates Have Three Forms:

Fluid (Water or Oil)

Semi-Solid (Oxidation Resins, Oil Additive Reactions, Polymer Separation)

Solid (Rust, Dirt, Wear Metals, Fibers, Slag, etc.

• Water by Karl Fischer Mix sample with a chemical reagent Monitor reaction with digital probe & meter

FACTS About Lubricant Contamination

- Contamination levels remain consistent under consistent operating conditions.
- Increased contamination is caused by the introduction of contaminates via maintenance, wear or faulty peripheral components (seals, filters, breathers)

Particles Generated By Machine = PLUS Seals, Breather Ingress = MINUS Filter Removal = Particle Accumulation =

100,000 per unit of time 50,000 per unit of time 75,000 per unit of time 75,000 per unit of time

ISO Solid Contaminant Code

MORE THAN	UP TO	CODE
40,000	80,000	23
20,000	40,000	22
10,000	20,000	21
5,000	10,000	20
2,500	5,000	19
1,300	2,500	18
640	1,300	17
320	640	16
160	320	15
80	160	14
40	80	13
20	40	12
10	20	11
5	10	10
2.5	5	9
1.3	2.5	8
© heierath Labor	atories, In <mark>c.3</mark> 2004	7

Bottle Cleanliness Levels Target = 18/16/13

• Standard Bottle = 13/11/7

SN = 31/32/61 Very Good SN Ratio

Ultra Cleaned = 10/7/5

SN = 250/640/250 Excellent SN Ratio

Ribbed Cleaned = 9/8/7

SN = 500/256/61 Excellent SN Ratio

Once Again ... SN = Target / Bottle

Contamination of Lubricants Light Blockage Solids Contamination of Collector

Large Particles
More Light is Blocked

Less Light is Blocked

LASER

Small Particles

Contamination of Lubricants

Solids
Microscopic Particle Counters

Thank you!

Questions?